
Substring Search
By:

Luke Deratzou,

Aditya Kumar,

Isabel Morales Sirgo,

Pooja Patel,

Garrett Sheehan

i

Table of Contents

Table of Contents…………………………………………………………….………………….i

Table of Figures………………………………………………………….……………………..ii

Introduction: What is Substring Search..……………………………….………...…………..1-2

Objective 1: Original Publication of KMP…………………………….……………...………..2

Objective 2: KMP Implementation…………………………………….……………………..2-3

Objective 3: Worst-Case Scenario……………………………………………………………3-5

Objective 4: Evaluate Performance of our algorithm……………………………………...…5-6

Objective 5: Evaluate brute force performance……………………………………………....6-9

Objective 6: When does KMP outperform the brute force algorithm……………………....9-10

References……………………………………………………………………………………..11

ii

Table of Figures

Figure 1: Sample Brute Force Substring Search...1

Figure 2: Sample KMP Substring Search...2

Figure 3: Sample De Bruijn Sequence…………………………………..………………………..4

Figure 4: Effect of Alphabet on KMP/Brute Force-Time…………………...……………………5

Figure 5: KMP Time Complexity as M Increases ………………………………………….……6

Figure 6: Alphabet Effect on KMP and Naïve Solution………………………………………….6

Figure 7: Comparisons as M Increases………………………………………………………...…7

Figure 8: Brute-Force Performance on Each Alphabet Comparisons………...………………..8-9

Figure 9: Brute-Force Performance on Each Alphabet Time……………………...……………..8

Figure 10: Comparisons as M Increases………………...………………………..………………9

1

Introduction: What is Substring Search?

The approach to conducting a substring search given a text of string length N and a

pattern string of length M to find an occurrence of the pattern within the text has numerous

solutions. One of these solutions is the Knuth-Morris-Pratt (KMP) algorithm. This algorithm was

conceived in 1974 by Donald Knuth and Vaughan Pratt and independently by James Morris. The

three then published the paper, Fast Pattern Matching in Strings, which discussed the KMP

algorithm together in 1977 in the SIAM Journal of Computing. [1] This algorithm was produced

from the given problem:

Given a string N, the problem of string-matching deals with finding whether a pattern M

occurs in N and if M does occur then returning the position in N where M occurs.

The brute force approach to a substring search would have the order of O(M*N) which is

considered a slow running and inefficient algorithm. This approach is slow because the elements

of pattern M that had comparisons performed earlier are continually redone. Moreover, when a

mismatch is detected for the first time the place of M would only move one position to the right

and the search would continue. Overall, the brute force a solution to the substring search

involves a large degree of repetition and comparisons. The brute force solution is illustrated

below.

Figure 1: Sample Brute Force Substring Search [2]

2

Substring searching algorithms have multiple applications including digital libraries,

screen scrapers, word processors, web search engines, spam filters, natural language processing,

and the DNA alphabet.

Objective 1: Original Publication of KMP

The KMP algorithm originated in a paper published by the SIAM Journal on Computing

in 1977. The paper was titled Fast Pattern Matching in Strings and authored by Donald E.

Knuth, James H. Morris Jr. And Vaughan R. Pratt. The paper describes KMP pattern matching

algorithm’s development, programming, efficiency, extensions, theoretical considerations,

palindromes, historical remarks, and a previous method of pattern matching. [1]

Objective 2: KMP Implementation

The KMP algorithm compares the pattern to the text in left-to-right order but shifts the

pattern more efficiently than the brute force algorithm. The KMP algorithm performs at

O(M+N). The KMP algorithm is composed of two components, a prefix function and a KMP

matcher. The prefix function includes information about how the pattern matches against shifts

of itself, this avoids the backtracking within the string N. The KMP matcher functions to find the

occurrence of M in N and returns the number of shifts of M after it has occurred. To avoid

redundant comparisons the algorithm shifts the pattern by the largest prefix of M [0...j-1] that is a

suffix of M [1...j]. The KMP solution is illustrated below.

Figure 2: Sample KMP Substring Search [2]

3

The KMP algorithm running time is proportional to the time needed to read the characters

in the text and pattern.

Objective 3: Worst-Case Scenario

In what scenario will the KMP algorithm work its hardest?

First, let us recognize the strengths of the algorithm and then think of a scenario where

that strength will be not be helpful. The main strength of the KMP algorithm is its ability to

analyze the reoccurring characters in a given pattern and be able to save time when searching

text using that knowledge.

Now in what scenario will that knowledge not be helpful?

The first scenario that comes to mind is a large alphabet. A large alphabet would

theoretically make KMP less effective since there is a lowered chance of matching a pattern in

the text and therefore would force the algorithm to perform more array inspections and

comparisons.

Another scenario where KMP would not be helpful is if the text being analyzed contained

unique substrings that were the same length as the desired pattern. This is another way to ensure

that KMP will struggle to find matches as the desired pattern would be difficult to find.

These scenario sound very similar to the De Bruijn Sequence, a sequence made up of characters

that has the following properties:

• Consist entirely of character in an alphabet the size of k

• The characters in the alphabet are used to create substrings that are the length of n

• Each instance of a substring occurs only once through the entire sequence.

4

Take this De-Bruijn Sequence for example (k = 2 [0 and 1 are the only characters] ; n = 2):

Figure 3: Sample De Bruijn Sequence

Notice how the substrings {0,0} , {0,1} , {1,0} , and {1,0} only occur once throughout the entire

sequence.

Imagine using a De Bruijn sequence as the text KMP is analyzing that has a large

alphabet and the desired pattern an arbitrary unique substring located in the sequence. KMP will

struggle to find any matches to the desired pattern due to the large alphabet and substrings being

entirely unique. KMP’s behavior would be very similar to a brute-force substring search

algorithm with this text and pattern combination. In this case, no amount of prefix and suffix

analysis on the pattern will help in a text and pattern string.

Overall, the following properties should make KMP work its hardest:

• The Text is a De Bruijn sequence where the alphabet is large.

• The Pattern an arbitrary unique substring located in the text’s De Bruijn Sequence.

As for a sample text and pattern to demonstrate the KMP algorithm working its hardest, I will

provide a De Bruijn sequence with a reduced alphabet rather than a large alphabet as the

sequence grows very rapidly as you increase the alphabet size. You can easily do it out by hand

and observe why KMP is ineffective with this text and pattern set:

Text: A A A B A A C A B B A B C A C B A C C B B B C B C C C A A

Pattern: B A C

5

Notice that the text is a De Bruijn Sequence where k = 3 {A, B, C} and n = 3 while the pattern an

arbitrary unique substring in the sequence.

Objective 4: Evaluate Performance of the Algorithm

NOTE: All relevant data can be found in this spreadsheet: https://wpi0-

my.sharepoint.com/:x:/g/personal/lderatzou_wpi_edu/EcZ04bR2TUNNmIE9_f22FOIBEYXCW

kuy3koFppGZ7VuEgw?e=jMzJuf

With a time complexity of O(N+M)[2], KMP is a reliable and consistent option when it

comes to efficiently performing substring search. The number of comparisons it executes on a

typical search is not affected by alphabet, though time is slightly inconsistent.

Figure 4: Effect of Alphabet on KMP/Brute Force-Time

KMP’s search time increases the greater the substring size is due to a larger substring size

causing KMP’s strategy of applying the prefix to take longer. As a result, KMP is not at its most

optimal when faced with a substring size that is close to the size of the pattern.

https://wpi0-my.sharepoint.com/:x:/g/personal/lderatzou_wpi_edu/EcZ04bR2TUNNmIE9_f22FOIBEYXCWkuy3koFppGZ7VuEgw?e=jMzJuf
https://wpi0-my.sharepoint.com/:x:/g/personal/lderatzou_wpi_edu/EcZ04bR2TUNNmIE9_f22FOIBEYXCWkuy3koFppGZ7VuEgw?e=jMzJuf
https://wpi0-my.sharepoint.com/:x:/g/personal/lderatzou_wpi_edu/EcZ04bR2TUNNmIE9_f22FOIBEYXCWkuy3koFppGZ7VuEgw?e=jMzJuf

6

 Figure 5: KMP Time Complexity as M Increases

Objective 5: Evaluate Performance of Brute Force Algorithm

 With a best-case time complexity of O(M)[2] and a worst-case time complexity of

O(MN), [2] performance varies drastically depending on how favorable the pattern is to the

brute-force algorithm. Unlike KMP, the brute force method’s efficiency is reliant on the size of

the alphabet the pattern uses. As seen in the graph below, brute force works well with higher

alphabet sizes, but its performance suffers when presented with a low alphabet size.

Figure 6: Alphabet Effect on KMP and Naïve Solution

7

This behavior is most evident when brute-force is provided with a binary alphabet, as

binary substring searches take considerably more comparisons than searches with any of the

other alphabets it is provided. Another significant performance factor for the brute-force

algorithm is how close the substring is to the pattern in size. As seen in the graph below, the

brute force algorithm’s comparisons decrease as M approaches N, making its performance solid

when dealing with a large substring size.

Figure 7: Comparisons as M Increases

On the flip side, the comparisons of brute-force increase considerably when the

difference between M and N is higher, and a low alphabet size accentuates this problem.

8

Figure 8: Brute-Force Performance on Each Alphabet Comparisons

Much of these observations on comparisons can be applied to time as well, as the amount

of time it takes for brute-force to find the substring increases with the difference in size between

N and M and the size of the alphabet.

Figure 9: Brute-Force Performance on Each Alphabet Time

9

Figure 10: Comparisons as M Increases

Objective 6: When does KMP outperform the brute force algorithm

KMP’s ability to outperform the brute force algorithm depends on the size of the alphabet

used and the size of the string in comparison to the size of the pattern. A greater alphabet size

reduces the amount of repetitions spent looking for a match, with the naïve solution faring far

better in the full alphabet than in the DNA alphabet and especially the binary alphabet. As seen in

the graph below, the brute-force algorithm with the standard alphabet outperforms KMP at the

beginning due to the higher alphabet size working in its favor.

Figure 8: Brute-Force Performance on Each Alphabet Comparisons

10

Although the brute force method can overtake KMP initially with the help of a higher

alphabet size, KMP eventually becomes the clear winner as the pattern size and the difference

between the substring size and pattern size increases.

11

References

[1] Donald E. Knuth, James H. Morris, Jr., Vaughan R. Pratt, Fast Pattern Matching (SIAM

Journal on Computing, June 1977),

https://pdfs.semanticscholar.org/4479/9559a1067e06b5a6bf052f8f10637707928f.pdf

(Accessed: 4/29/2020)

[2] Ananth Grama, Strings and Pattern Matching (Purdue University, n.d.)

https://www.cs.purdue.edu/homes/ayg/CS251/slides/chap11.pdf Accessed: 4/29/2020)

https://pdfs.semanticscholar.org/4479/9559a1067e06b5a6bf052f8f10637707928f.pdf
https://www.cs.purdue.edu/homes/ayg/CS251/slides/chap11.pdf

